ESTUDO DE COMPLEXOS DE Zn (II) COM ALGUMAS POLIAMINAS E A FOSFOCREATINA

Aluno: Tuanny M. C. Ristow Branco Orientador: Profa. Dra. Judith Felcman

Introdução

As poliaminas, compostos importantes encontrados na maioria dos organismos vivos, desempenham vários papéis em processos biológicos. Entre as funções biológicas das poliaminas podemos citar as funções neurofisiológicas.¹

Entre as poliaminas naturais encontradas nos organismos de mamíferos, pode-se citar a putrescina (Put) [(1,4- butanodiamina) (NH $_2$ (CH $_2$) $_4$ NH $_2$], a espermidina (Spd) [(N-(3-aminopropil)-1,4-butanodiamina) (NH $_2$ (CH $_2$) $_3$ NH(CH $_2$) $_4$ NH $_2$) -] e a espermina (Spm) [(N,N'-bis(3-aminopropil)-1,4-butanodiamina) (NH $_2$ (CH $_2$) $_3$ NH(CH $_2$) $_4$ NH(CH $_2$) $_3$ NH $_2$)]. O trabalho também compreende o estudo de duas diaminas, a 1,3 diaminopropano (Tn) (NH $_2$ (CH $_2$) $_3$ NH $_2$) e a etilenodiamina (En) (NH $_2$ -CH $_2$ -NH $_2$) que serão estudadas com o objetivo de comparação.

A Put², Spd³ e a Spm³, exibem um número de efeitos neurofisiológicos e metabólicos no cérebro. Estudos relacionados ao nosso sistema nervoso central (SNC), indicam que estas aminas podem potencializar ou inibir a ação de um receptor cerebral, o NMDAr que tem entre suas funções no SNC, o papel da plasticidade sináptica e a formação de sinapses que implicam em processos de aprendizagem e memória.³

A fosfocreatina (PCr) é a molécula responsável por manter a concentração de ATP constante nos organismos vivos. ⁴ Alterações nos níveis de fosfocreatina no cérebro podem estar implicadas em patogêneses de algumas doenças cerebrais. ^{5,6}

Similar a outros compostos endógenos, o zinco pode ser tanto um neuromodulador essencial quanto uma potente neurotoxina, dependendo da sua concentração intracelular⁷. Baixos níveis de zinco possuem uma ação anticonvulsivante e neuroprotetora, enquanto altas concentrações de zinco podem matar neurônios e induzir atividade epilética.⁸

Objetivo

Estudar o comportamento dos sistemas contendo PCr, En, Tn, e Spd e zinco (II), de interesse biológico via fosfato, carboxilato ou grupamento guanidino através de diversas técnicas, com a finalidade de melhor entender as interações que possam ocorrer. O entendimento destas interações permite melhor avaliar a função ou o efeito destes componentes no organismo e sugerir formas de potencializar ou inibir a sua atuação.

Resultados e discussões

Foram realizados estudos de potenciometria e espectroscopia Raman para sistemas binários e ternários.

A partir do programa de computador Hyperquad foram calculadas as constantes de formação dos sistemas (Tabela 1). Pode-se também observar, as possíveis interações entre os ligantes, quando os valores de Δ são positivos, tanto quando as aminas estão protonadas ou deprotonadas.

Tabela 1 – Log das constantes de formação dos complexos mistos zinco com os ligantes

	2		, 1				
	ZnPCr	ZnEn	ZnPCrEn	ZnTn	ZnPCrTn	ZnSpd	ZnMPCrSpd

		ZnEnH	ZnPCrEnH	ZnTnH	ZnPCrTnH	ZnSpdH	ZnPCrSpdH
	7,30±0,03	5,89±0,06	13,16±0,06	6,99±0,04	14,29±0,10	8,82±0,04	20,79±0,05
		12,23±0,06	22,19±0,05	14,40±0,06	23,67±0,04	17,52±0,03	30,04±0,03

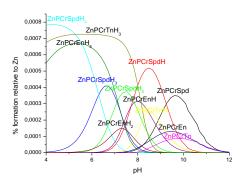


Figura1: Distribuição das espécies

Através da espectroscopia Raman foi possível elucidar a coordenação da fosfocreatina com o íon Zn (II), em solução aquosa, através de um átomo de nitrogênio e um átomo de oxigênio do grupo fosfato. Na tabela 3 estão as principais bandas de Raman para o sistema Zn:PCr:PA

Tabela 3 – Principais bandas de Raman para o sistema Zn:PCr:PA 1:1:1

Assignments	v _s PO	ν _{ass} PO	$v_{aas}COO^{-}$	v _s COO
PCr	987	1169	1595	1395
ZnPCrEn	966	1195	1595	1392
ZnPCrTn	952	1185	1595	1393
ZnPCrSpd	968	1188	1556	1395

Conclusões

O estudo permitiu a compreensão do comportamento dos compostos de coordenação formados pelo íon metálico Zn (II), a fosfocreatina e algumas poliaminas, suas estabilidades, forma de coordenação e interação entre os ligantes.

Referências

¹ Almeida. B. L., Versiani O., Sousa M., Mercê A. L. R., Mangrich A. S., Felcman J., *Inorganica Chimica Acta*, *Volume 362, Issue 7*, *15 May 2009*, *Pages 2447-2451*

²Toner C.C., Stamford J.A, European Journal of Pharmacology **1997**, 340, 133

³Camera K., PhMthesis Univ. Fed. Santa Maria

⁴ Silva, A.M., Mercê, A. L.R., Mangrich, A.S., Souto, C. A. T., Felcman, J., Polyhedron, 2006, 25, 1319-1326

⁵ Mirza Y., O'Neill J., Smith E.A. Russel A., Smith, J.M., Banerjee SP, Bhandari R., Boyd, C., Rose, M., Ivey, J., Renshaw PF, Rosemberg DR., J. Child. Neurol., 2006, 21, 106-11

⁶ Kato T., Takahashi S., Shioiri T., Murashita J., Hamakawa H., Inubushi T., J. Affect Disord., **1994**, 2, 125-33

⁷Baranano et al., 2001

⁸Frederickson & Moncrieff, 1994