ESTUDO DE COMPLEXOS DE Cu (II) COM ALGUMAS POLIAMINAS E A FOSFOCREATINA

Aluno: Nina Loureiro Orientador: Profa. Dra. Judith Felcman

Introdução

As poliaminas, compostos importantes encontrados na maioria dos organismos vivos, desempenham vários papéis em processos biológicos. Entre as funções biológicas das poliaminas podemos citar as funções neurofisiológicas.¹

Entre as poliaminas naturais encontradas nos organismos de mamíferos, pode-se citar a putrescina (Put) [(1,4- butanodiamina) (NH $_2$ (CH $_2$) $_4$ NH $_2$], a espermidina (Spd) [(N-(3-aminopropil)-1,4-butanodiamina) (NH $_2$ (CH $_2$) $_3$ NH(CH $_2$) $_4$ NH $_2$) -] e a espermina (Spm) [(N,N'-bis(3-aminopropil)-1,4-butanodiamina) (NH $_2$ (CH $_2$) $_3$ NH(CH $_2$) $_4$ NH(CH $_2$) $_4$ NH(CH $_2$) $_3$ NH $_2$)]. O trabalho também compreende o estudo de duas diaminas, a 1,3 diaminopropano (Tn) (NH $_2$ (CH $_2$) $_3$ NH $_2$) e a etilenodiamina (En) (NH $_2$ -CH $_2$ -NH $_2$) que serão estudadas com o objetivo de comparação.

A Put², Spd³ e a Spm³, exibem um número de efeitos neurofisiológicos e metabólicos no cérebro. Estudos relacionados ao nosso sistema nervoso central (SNC), indicam que estas aminas podem potencializar ou inibir a ação de um receptor cerebral, o NMDA que tem entre suas funções no SNC, o papel da plasticidade sináptica e a formação de sinapses que implicam em processos de aprendizagem e memória.³

A fosfocreatina (PCr) é a molécula responsável por manter a concentração de ATP constante nos organismos vivos.⁴ Alterações nos níveis de fosfocreatina no cérebro podem estar implicadas em patogêneses de algumas doenças cerebrais.^{5,6}

O cobre é um elemento essencial à vida. Estudos recentes demonstraram que o cobre também é um elemento essencial ao nosso cérebro. Segundo Schlief et al⁷, o cobre teria, entre outros papéis, o de responsável por regular a atividade do aprendizado e memória do receptor cerebral NMDA.⁷

Objetivo

Estudar o comportamento dos sistemas contendo PCr, poliaminas e cobre (II), de interesse biológico via fosfato, carboxilato ou grupamento guanidino através de diversas técnicas, com a finalidade de melhor entender as interações que possam ocorrer. O entendimento destas interações permite melhor avaliar a função ou o efeito destes componentes no organismo e sugerir formas de potencializar ou inibir a sua atuação.

Resultados e discussões

Foram realizados estudos de potenciometria, espectrofotometria ultravioleta e visível, espectroscopia Raman e ressonância paramagnética de életrons, para sistemas binários e ternários.

A partir do programa de computador Hyperquad foram calculadas as constantes de formação dos sistemas (Tabela 1). Pode-se também observar, as possíveis interações entre os ligantes, quando os valores de Δ são positivos, tanto quando as aminas estão protonadas ou deprotonadas.

Tabela 1 – Log das constantes de formação dos complexos mistos de cobre com os ligantes

Espécie MH _x L ₁ L ₂	Log ß MH _x L ₁ L ₂	$Log \ \beta \ ML_1 + Log \ \beta \ MH_xL_2$? (Log ß MH _x L ₁ L ₂ - Log ß
			$ML_1 + Log \beta MH_xL_2$
CuPCrEn	17,94	(7,89 + 10,47)	-0,42
CuPCrTn	17,63	(7,89+9,85)	-0,11
CuPCrPut	16.58	(7,89 + 8,83)	-0,14
CuPCrSpd	22,05	(7,89 + 11,89)	2,27
CuPCrSpm	25,33	(7,89 + 14,86)	2,57
CuHPCrTn	25,46	(7,89 + 15,64)	1.93
CuHPCrPut	22,98	(7,89 + 14,41)	0,68
CuHPCrSpd	29,26	(7,89 + 19,58)	1,79
CuHPCrSpm	32,02	(7,89 + 21,32)	2,81

Como eram esperados, os resultados de EPR, tabela 2, demonstram, de um modo geral, um campo mais forte quando o Cu (II) está ligado as poliaminas e a fosfocreatina formando complexo ternário.

Tabela 2- Correlação entre o parâmetro isotrópico de EPR go e o correspondente ? máx no espectro UV-Vis dos sistemas binários e ternários

	pН	g_0	? max
CuPCr	6,5	2,1723	718,8
CuEn	5,99	2,138	666
CuTn	6,84	2,140	678
CuPut	7,0	2,1954	728
CuSpd	8,37	2,1250	626
CuSpm	8,0	2,1150	561
CuPCrEn	6,5	2,1240	628
CuPCrTn	9,0	2,1250	600
CuPCrPut	8,0	2,1255	694
CuPCrSpd	8,5	2,1255	615
CuPCrSpm	9,0	2,1550	556

Através da espectroscopia Raman foi possível elucidar a coordenação da fosfocreatina com o íon Cu (II), em solução aquosa, através de um átomo de nitrogênio e um átomo de oxigênio do grupo fosfato. Na tabela 3 estão as principais bandas de Raman para o sistema Cu:PCr.

Tabela 3 – Principais bandas de Raman para o sistema Cu:PCr 1:1

Assignment	PCr	Cu PCr
? N-H (PH=6)	3372	3398
	3264	3281
? _{ass} COO ⁻	1651	1650
? C=N	1617	1632
		1669
? _s COO ⁻	1396	1396
? _{ass} PO ₃	1162	1197
C-N stretch (P-NH-R)	1117	1171
? _s (P=O)-OH	981	981
? (P=O)-(OH) ₂	918	950
P-N stretch (P-NH-R)	850	818
? Cu-N (PH=6)		416
? Cu-O (PH=6)		334

Conclusões

O estudo permitiu a compreensão do comportamento dos compostos de coordenação formados pelo íon metálico Cu (II), a fosfocreatina e algumas poliaminas, suas estabilidades, forma de coordenação e interação entre os ligantes.

Referências

¹ Almeida. B. L., Versiani O., Sousa M., Mercê A. L. R., Mangrich A. S., Felcman J., *Inorganica Chimica Acta*, *Volume 362, Issue 7*, *15 May 2009, Pages 2447-2451*

² Toner C.C., Stamford J.A, European Journal of Pharmacology **1997**, 340, 133

³Camera K., PhMthesis Univ. Fed. Santa Maria

⁴ Silva, A.M., Mercê, A. L.R., Mangrich, A.S., Souto, C. A. T., Felcman, J., Polyhedron, 2006, 25, 1319-1326

⁵ Mirza Y., O'Neill J., Smith E.A. Russel A., Smith, J.M., Banerjee SP, Bhandari R., Boyd, C., Rose, M., Ivey, J., Renshaw PF, Rosemberg DR., J. Child. Neurol., 2006, 21, 106-11

⁶ Kato T., Takahashi S., Shioiri T., Murashita J., Hamakawa H., Inubushi T., J. Affect Disord., **1994**, 2, 125-33

⁷ Schlief M. L., Craig, A. M.,, Gitlin J.D.,J. Neuroscience, **2005**, 25,239-246