ANÁLISE DO COMPORTAMENTO DINÂMICO DE VÁLVULAS DE ALÍVIO DE PRESSÃO

Aluno: Bruno Nieckele Azevedo Orientador: Angela Ourivio Nieckele

Introdução

Válvulas de alívio de pressão (VAP) são uns dos dispositivos mais importantes usados na segurança de operações de escoamento em tubulações, uma vez que estão encarregadas de garantir a integridade das instalações. Apesar de sua importância, alguns poucos trabalhos sobre o seu comportamento dinâmico estão presentes na literatura (Catalani, 1984; MacLeod, 1985; Ortega et al., 2008). No entanto, a grande maioria apresenta modelos simplificados, considerando regime permanente, e com operações restritas a situações de pressão máxima de alívio.

Objetivo

Visando aprimorar os modelos que prevêem a dinâmica de operação de válvulas de alívio (Fig. 1), o presente trabalho visa determinar os campos de velocidade e pressão no interior de válvulas de alívio de pressão (PRV) utilizando uma modelagem dinâmica.

Metodologia

Considerou-se uma válvula PRV simplificada (Fig. 2), a qual é bidimensional, axisimétrica. O campo de velocidade e pressão foi resolvido através da solução das equações de conservação de massa e quantidade de movimento, juntamente com o modelo de turbulência κ–ε, utilizando o *software* FLUENT, o qual é baseado no método de volumes finitos (Patankar, 1980).

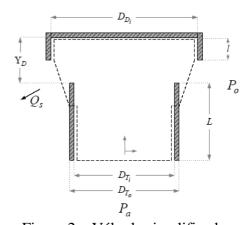


Figura 2 – Válvula simplificada

A pressão de entrada é a pressão de *set-point* definida para a abertura da PRV. A pressão de saída, em geral é a pressão atmosférica. A partir da solução do campo de velocidade, conhecendo-se das condições de contorno de pressão, pode-se determinar a vazão, o que permite o cálculo do coeficiente de descarga.

O coeficiente de descarga C_d é definido em função da vazão volumétrica Q na saída da válvula, da área de entrada da válvula A, das pressões na entrada e saída da mesma, p_{in} e p_{out} , e da massa específica ${\bf r}$ como

$$C_d = \frac{Q/A}{\sqrt{2(P_{in} - P_{out})/r}},\tag{1}$$

A Figura 3 ilustra a linhas de corrente obtidas para três instantes de tempo diferentes durante a abertura da válvula. Pode-se observar que o escoamento é retilíneo no duto de alimentação da válvula. O escoamento é direcionado para baixo devido ao formato em U invertido da tampa, induzindo uma recirculação no corpo da válvula, a qual cresce de intensidade à medida que a válvula se abre.

Um detalhe do vetor velocidade é apresentado na Fig. 4 onde se observa claramente a complexidade do escoamento, com forte recirculação abaixo da tampa.

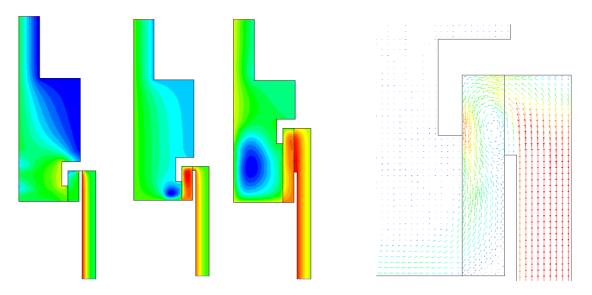


Figura 3 – Linhas de corrente para diferentes aberturas

Figura 4 – Campo de velocidade

Conclusões

Determinou-se numericamente o escoamento através de uma válvula de alívio considerando-se seu comportamento dinâmico. A metodologia proposta para a determinação do coeficiente de descarga mostrou-se satisfatória.

Referências

- 1 CATALINI, L., 1984, Dynamic stability analysis of spring loaded safety valves Elements for improved valves performance through assistance devices. **Conference on Structural Mechanical in Reactors**, August 22-26.
- 2 MACLEOD, G., 1985, Safety valve dynamic instability: an analysis of chatter, **ASME Journal of Pressure Vessel Technology**, Vol. 107, pp. 172-177.
- 3 ORTEGA, A.J., AZEVEDO, B.N., PIRES, L.F.G., NIECKELE, A.O. AND AZEVEDO, L.F.A., 2008, A Numerical Model about The Dynamic Behaviour of a Pressure Relief Valve, 12th Brazilian Congress of Thermal Engineering and Sciences, BH, MG.
- 4 Launder, B. E. and Spalding, D. B., 1974, The numerical computation of turbulent flows, **Computer Methods in Applied Mechanics and Engineering**, Vol. 3(2), pp. 269-289.
- 5 PATANKAR, S. Numerical heat transfer and fluid flow. Hemisphere, New York, 1980.