ANÁLISE ESTRUTURAL PARA CLASSIFICAÇÃO DE PÁGINAS DA WEB

Aluno: Iam Vita Jabour Orientador: Raúl Rentería e Eduardo Laber

Introdução

Este trabalho apresenta uma abordagem para a classificação funcional de páginas da Web denominada classificação estrutural, onde apenas informações topológicas são analisadas, criando independência à análise textual e apresentando um novo ferramental para a resolução do problema. É adotada a análise individual de páginas, ao invés da análise de sítios.

Objetivos

Classificar de acordo com a funcionalidade as páginas HTML da Web, utilizando informações obtidas a partir da estrutura desses documentos.

Metodologia

O problema de classificação de páginas da Web, também conhecido como categorização de páginas da Web, é abordado como um problema de classificação supervisionada [1], onde um conjunto de dados previamente rotulados é utilizado para o treino e teste do modelo de classificação. As classes utilizadas são formuladas a partir de escopos como funcional, onde o objetivo da página define as classes, e de assunto, onde o que a página apresenta define sua classe. Neste trabalho é adotado o escopo funcional.

Para o aprendizado e a criação do modelo de classificação são utilizadas as classes notícias, portal de notícias e outros. A classe notícias é constituída por páginas que apresentam informações de forma textual, onde o texto é o elemento principal da página. A classe portal de notícias é constituída por páginas que trazem diversos títulos ou chamadas para notícias, junto ao hiperlink para essas notícias. A classe outro é formada por páginas que não se adéquam a classe notícia ou a classe portal de notícias.

Um conjunto de páginas, denominado corpus, foi obtido da Web e rotulado. Esse é formado por trezentas páginas, sendo cem de cada classe apresentada anteriormente. Esse corpus é dividido em duas partes, onde: o conjunto de treino formado por 80% dos documentos é utilizado para a evolução e aprendizado; e o conjunto de teste, é guardado m início das análises para testar o modelo de classificação obtido a partir do conjunto de treino.

A análise topológica é realizada sobre a estrutura de um documento, por isso é utilizado DOM¹, fornecido pela W3C², para a criação das estruturas dos documentos estudados. Essa estrutura é uma árvore, onde seus nós são de tipos específicos, existindo 11 tipos. Os tipos *Element* e *Text* são importantes para este estudo, pois agregam grande quantidade de informação da topologia do documento. Ignorar os outros tipos não prejudica a análise, apenas a simplifica.

Observando essas estruturas os esforços são direcionados em três linhas principais. O estudo de nós busca identificar padrões estruturais, criados pelos autores dos documentos, na tentativa de encontrar semelhanças entre documentos da mesma classe. O estudo de tags procura identificar as tags que são mais utilizadas dentre as classes, assim como, as mais

¹ DOM: Document Object Model – http://www.w3.org/DOM/

² W3C: World Wide Consortuim – http://www.w3.org

importantes e como obter, a partir dessas informações, atributos para a classificação dos documentos. O estudo de caracteres identifica padrões no balanceamento do texto dentro da estrutura desses documentos.

Após analisar dados estatísticos para cada estudo apresentado, é possível observar que as informações são significativas para a classificação dos documentos. E a partir disso realizar experimentos para testar a qualidade de modelos de classificação utilizando os atributos obtidos a partir das observações estruturais.

A ferramenta WEKA, desenvolvida pela Universidade de Waikato, foi utilizada para a realização dos experimentos. A técnica de Support Vector Machine [2] (SVM) é escolhida para a criação do modelo de classificação e o algoritmo SMO [3] é adotado, por ser oferecido de forma nativa pela WEKA.

Os experimentos sobre o conjunto de treino foram realizados utilizando a técnica de validação cruzada com k partições [4] executando-a dez vezes. Esses apresentaram os seguintes resultados para duas (notícia x portal de notícias) e três classes (notícia x portal de notícias x outro):

Informação	Nós		Tags		Caracteres		Todos	
Classes	2 classes	3 classes	2 classes	3 classes	2 classes	3 classes	2 classes	3 classes
Acurácia	71,36%	56,12%	74,68%	58,76%	81,51%	56,87%	83,99%	64,92%
Precision	0,69	0,56	0,78	0,70	0,78	0,60	0,88	0,78
Recall	0,80	0,52	0,70	0,55	0,92	0,88	0,81	0,71
F1	0,73	0,58	0,73	0,60	0,84	0,70	0,83	0,73

Os experimentos do conjunto de teste foram realizados obtendo-se um modelo a partir do conjunto de treino e aplicando-o no conjunto de teste. Seus resultados para duas e três classes, como no experimento anterior são apresentados na tabela abaixo:

Informação	Nós		Tags		Caracteres		Todos	
Classes	2 classes	3 classes	2 classes	3 classes	2 classes	3 classes	2 classes	3 classes
Acurácia	65%	40%	67.5%	48.33%	70%	55%	75%	45%
Precision	0.63	0.37	0.73	0.53	0.67	0.5	0.81	0.48
Recall	0.75	0.5	0.55	0.45	0.8	0.8	0.65	0.55
F1	0.68	0.43	0.63	0.49	0.73	0.62	0.72	0.51

Conclusões

A classificação funcional de páginas da Web utilizando apenas elementos estruturais é possível, sendo apresentados resultados com acurácia de 75% para a classificação com duas classes (notícia x portal de notícia). A abordagem estrutural apresenta grande quantidade de informação que ainda pode ser explorada, apresentando grande potencial para classificação de outras classes.

Referências

- 1 Mitchell, T.M. Machine Learning. New York: McGraw-Hill. 1997.
- 2 Bores, B.; Guyon, I.; Vapnik, V. A training algorithm for optimal margin classifiers. Annual Workshop on Computational Learning Theory. 1992
- 3 Platt, J. Using Sparseness and Analutic QP to Speed Training of Support Vector Machines. Advances in Neural Information Processing Systems 11. 1999
- 4 Tan, P.; Steinbach, M.; Kumar, V. Introdution to Data Mining. US Ed edition: Addison Wesley, 2005. P. 146-236