

RELATÓRIO ANUAL DO PROJETO DE INICIAÇÃO CIENTÍFICA

INVESTIGAÇÃO DE POLUENTES ATMOSFÉRICOS

Alunos: Raphael Gonçalves Rieboldt Oliveira e Iuri Sobral Pinto Dias de Pinho Orientador: Marcos Sebastião de Paula Gomes

Introdução

O projeto tem como principal objetivo um melhor entendimento da distribuição de tamanho e propriedades ópticas dos aerossóis urbanos em diferentes locais de amostragem na cidade do Rio de Janeiro. Este conhecimento é de relevante importância para determinar seus efeitos adversos à saúde humana, redução da visibilidade e sua interação com o balanço radiativo da atmosfera, já que as partículas de aerossol são responsáveis pelo espalhamento ou absorção da radiação, além de servirem como núcleo de condensação na formação de nuvens.

O aerossol é constituído por partículas provenientes de fontes naturais ou antropogênicas. No caso do Rio de Janeiro, as principais fontes de particulado são as florestas que rodeiam a cidade, o mar e a frota veicular. Ao contrário do gás carbônico, que demora mais de 100 anos para sumir da atmosfera, os aerossóis têm vida curta, com cerca de uma semana. As suas partículas formadoras podem ser classificadas de acordo com o seu tamanho a partir do seguinte critério:

- Partículas Grossas: 2,5 μ m < d_a < 100 μ m
- Moda de Acumulação: $0,1 \mu m < d_a < 2,5 \mu m$
- Moda de Nucleação ou Partículas Ultrafinas: $0,005 \ \mu m < d_a < 0,1 \ \mu m$

Este tamanho está diretamente relacionado à origem, composição química, tempo de residência atmosférico, propriedades ópticas, efeitos ambientais e deposição no sistema respiratório humano.

Coleta

Para a coleta das amostras durante o projeto foram utilizados três dos oito estágios de um impactador inercial desenvolvido nos laboratórios do Departamento de Engenharia Mecânica da PUC-Rio. Este instrumento funciona através de um fluxo de ar constante e ao longo dos estágios, separa as partículas de acordo com o seu tamanho, já que as partículas maiores que o tamanho de corte de determinado estágio sofrem impactação inercial enquanto que as menores passam ao estágio seguinte. O tamanho de corte é dependente do diâmetro e do comprimento dos orifícios e da distância entre estes e a placa de impactação.

O uso destes instrumentos é necessário para obter a separação física das partículas. Com a coleta podemos também avaliar a composição química do aerossol. Isso nos permitirá analisar a contribuição das diferentes fontes, naturais ou antropogênicas, nas concentrações dos aerossóis medidos no Rio de Janeiro.

Ilustração 1: Funcionamento do Impactador Inercial

Ilustração 2: Impactador Inercial de 8 Estágios Desmontado

Os estágios utilizados durante este período são caracterizados por possuírem, aproximadamente, os seguintes tamanhos de corte:

- Estágio $1 \rightarrow d_a > 10 \ \mu m$
- Estágio $2 \rightarrow d_a > 3 \mu m$
- Estágio $3 \rightarrow d_a > 1 \ \mu m$

Ilustração 3: Desenhos Esquemáticos dos Estágios Utilizados

Foram realizadas no total 14 amostragens, em diferentes locais da Pontificia Universidade Católica do Rio de Janeiro, todas elas com uma vazão de ar constante de 25 litros/minuto e duração total de uma hora.

Para cada amostra foram utilizados três substratos de papel alumínio, todos eles com uma pequena quantidade de graxa de silicone de alto vácuo, para a coleta das partículas. O papel da graxa é evitar que a partícula, ao colidir-se com o papel alumínio, ricocheteie, impossibilitando assim a sua captura. Há a necessidade de se aguardar a evaporação total do solvente antes do uso, para que o resultado não seja mascarado. Ao se pesar estes substratos antes e depois das amostragens é possível então determinar a massa total das partículas capturadas.

A partir da 7^a amostra o método de colocação da graxa foi modificado. Até este momento esta era colocada apontando-se o spray na direção do substrato, fato este que fazia com a graxa escorresse para a borda do mesmo e uma grande quantidade fosse perdida durante a amostragem, tornando impossível determinar a massa exata das partículas capturadas em cada estágio. Foram então utilizados cotonetes, que nos permitiram colocar uma menor quantidade de graxa melhorando consideravelmente a eficácia do processo. Os dados das primeiras amostragens encontram-se na tabela abaixo. Vale ressaltar que tais dados inconclusivos devido à perda de parte da graxa durante o processo.

						N I O
AMOSTRAGEM	1	2 3		4	5	6
Massa do Substrato						
Antes (mg)						
Estágio 1	29,813	29,490	30,270	30,569	31,034	29,743
Estágio 2	30,265	29,741	30,322	31,688	29,864	29,940
Estágio 3	30,158	31,035	30,428	31,803	30,599	31,031
Depois (mg)						
Estágio 1	29,811	29,501	30,259	30,576	31,015	29,753
Estágio 2	30,270	29,753	30,325	31,681	29,874	29,956
Estágio 3	30,167	31,017	30,405	31,796	30,605	31,028

Tabela 1: Amostragens - 1º método

Gráfico 1: Massas coletadas utilizando o primeiro método de colocação da graxa

	1		1	1			1	
AMOSTRAGEM	7	8	9	10	11	12	13	14
Massa do Substrato		_			_			
Antes (mg)								
Estágio 1	29,821	29,474	30,883	29,766	29,952	29,940	29,418	30,150
Estágio 2	30,442	32,017	30,646	30,265	29,582	29,475	29,671	30,092
Estágio 3	30,434	30,270	30,151	30,534	31,732	30,448	29,399	30,171
Depois (mg)								
Estágio 1	29,841	29,482	30,913	29,771	30,031	29,986	29,437	30,158
Estágio 2	30,567	32,012	30,681	30,288	29,681	29,557	29,693	30,109
Estágio 3	30,449	30,267	30,171	30,561	31,777	30,503	29,411	30,185

Após a mudança no método de colocação da graxa foram obtidos os seguintes valores:

Tabela 2: Amostragens - 2º método

Gráfico 2: Massas coletadas utilizando o segundo método de colocação da graxa

Análise das Propriedades Físicas do Aerossol

Um fotômetro solar portátil está sendo utilizado para as amostragens. Através do fotômetro obtemos a espessura óptica dos aerossóis e a intensidade da radiação solar incidente na superfície terrestre fato este que nos permite analisar a influência do efeito direto dos aerossóis urbanos no balanço de radiação. A comunicação deste aparelho com o computador foi feita através do HyperTerminal, software que acompanha o Windows e nos permite, realizar amostragens, importar os dados já armazenados, apagar dados não satisfatórios e alterar as constantes utilizadas e as coordenadas geográficas do ponto de coleta.

Ilustração 4: Fotômetro Solar utilizado

As medidas são realizadas durante o período matutino e vespertino e devido à necessidade de se manter o fotômetro diretamente apontado para o sol, foi desenvolvido um protótipo de madeira, capaz de girar 360° em torno de seu próprio eixo e hábil a uma inclinação de 0° a 90°, permitindo assim o acompanhamento manual do disco solar durante todo o período em questão.

De novembro de 2006 até março de 2007 foi realizado um total de 209 amostragens em diferentes períodos do dia para avaliar a variação ao longo do tempo.

DIA	MEDIÇÕES	PERÍODO	HORÁRIO		
Mês: Setembro/2006					
15	2	tarde	15:40/16:00		
18	4	tarde	15:30/16:10		
20	13	manhã e tarde 11:30/12:45			
28	13	manhã	09:35/10:50		
Mês Outubro	o/2006				
5	2	manhã	10:30/10:45		
16	10	tarde	14:00/15:00		
24	1	tarde	15:00		
25	4	tarde	15:20/16:00		
30	4	tarde	13:10/14:00		
Mês Novem	bro/2006				
1	4	manhã	09:20/10:00		
6	4	tarde	14:10/15:00		
16	14	manhã e tarde	08:30/15:00		
Mês Dezem	bro/2006				
19	6	manhã	09:00/11:00		
Mês Janeiro	/2007				
19	13	tarde	15:15/18:15		
25	9	manhã	10:00/12:00		
Mês Fevere	iro/2007				
1	9	tarde	14:15/16:15		
13	13	manhã e tarde	11:30/12:45 E 13:45/15:15		
14	2	manhã	10:30/10:45		
16	3	tarde	14:30/15:00		
26	8	manhã	09:30/13:00		
28	7	manhã e tarde	11:45/13:15		
Mês Março/2	2007				
2	15	manhã e tarde	11:20/15:00		
7	9	tarde	14:00/16:00		
Mês Julho/2	007				
3	1	manhã	09:00		
6	2	tarde	14:45/14:55		
7	2	manhã	08:50/09:30		
8	4	manhã e tarde	09:10/14:40		
9	4	manhã e tarde	09:55/15:50		
10	1	manhã	08:45		
17	2	manhã	09:30/11:55		
19	3	tarde	12:25/15:05		
20	2	manhã	08:35/09:40		
21	2	tarde	13:10		
22	1	manhã	11:45		
23	1	tarde	13:15		

Tabela 3 e 4: Cronologia das medições

Para analisar a influência das nuvens na variabilidade dos dados realizamos 20 medições seguidas em um dia de céu limpo e em outro com alguma nebulosidade.

Ficou bastante claro que a presença de nuvens influencia na qualidade dos dados obtidos. Utilizando como exemplo o sinal recebido pelo filtro de onda de 440 nm, podemos notar que quando o céu está com um pouco de nuvens os dados variam muito mais em relação ao dia com céu limpo.

Ilustração 5: Sinal recebido com o céu limpo

Ilustração 6: Sinal recebido com o céu com nuvens

Com os valores obtidos foi possível calcular as médias mensais para todos os parâmetros em questão.

				Valores	Médios			
	set/06	out/06	nov/06	dez/06	jan/07	fev/07	mar/07	jul/07
SIG440	456,80	521,62	606,43	638,11	627,89	612,01	650,48	442,41
SIG675	672,46	821,71	875,19	950,88	945,32	848,02	935,93	757,91
SIG870	470,65	572,26	604,25	646,68	648,38	572,45	635,24	518,37
SIG936	245,38	206,63	195,88	236,38	172,39	251,67	288,52	253,56
SIG1020	774,70	953,89	998,41	1072,87	1072,43	931,03	1039,55	893,44
R440_675	0,6648	0,5993	0,6882	0,6710	0,6612	0,7247	0,6931	0,5743
R675_870	1,4318	1,4327	1,4451	1,4707	1,4709	1,4569	1,4727	1,4019
R875_936	2,3754	2,9584	3,0952	2,7922	4,1701	2,4167	2,2664	2,2540
R936_1020	0,2977	0,2139	0,1960	0,2206	0,1604	0,2680	0,2767	0,2752
AOT440	0,495	0,271	0,280	0,166	0,137	0,355	0,158	0,229
AOT675	0,412	0,176	0,189	0,102	0,090	0,306	0,106	0,157
AOT870	0,356	0,132	0,132	0,072	0,060	0,275	0,074	0,118
AOT936	0,353	0,123	0,127	0,067	0,057	0,279	0,074	0,117
AOT1020	0,350	0,119	0,123	0,061	0,055	0,283	0,075	0,115
WATER	2,13	2,63	3,47	2,65	3,33	2,69	2,22	1,58

Tabela 5: Médias mensais dos valores obtidos

LEGENDA
SIG440 - Sinal em milivolts[mV]
SIG675 - Sinal em milivolts[mV]
SIG870 - Sinal em milivolts[mV]
SIG936 - Sinal em milivolts[mV]
SIG1020 - Sinal em milivolts[mV]
R440_675 - Proporção dos sinais entre os canais
R675_870 - Proporção dos sinais entre os canais
R875_936 - Proporção dos sinais entre os canais
R936_1020v - Proporção dos sinais entre os canais
AOT440 - Espessura óptica do aerossol
AOT675 - Espessura óptica do aerossol
AOT870 - Espessura óptica do aerossol
AOT936 - Espessura óptica do aerossol
AOT1020 - Espessura óptica do aerossol
WATER - Coluna de vapor d'água [cm]

Tabela 6: Legenda

Prosseguimento

O projeto terá continuidade para que assim possam ser realizadas amostragens ao longo de um ano inteiro. Isso é importante justamente para ter o conhecimento a respeito da sazonalidade das propriedades do aerossol e sua influência nos fatores já citados no relatório.

Referências

1 – MYHRE, G.; MYRE, A.; STORDAL, F. *Historical evolution of radiative forcing of climate*. Atmospheric Environment, v. 25, p. 2362-2373, 2001.

2 – IPCC (Intergorvernanmental Panel on Climate Change). *Aerosols, their Direct and Indirect Effects*. (Ed.) PENNER, J.E. et al. Cambridge Unoversity Press, Cambridge, Reino Unido; Nova York, EUA, Cap. 5, p. 291-348, 2001.

3 – KONDRATYEV, K.Y. *Greenhouse warming versus aerosol cooling in the context of global climate change*. Energy Conversion and Management, v. 37, p. 763-768, 1996.

4 – LI, Z.; GOLOUB, P.; DEVAUX, C.; GU, X.; QIAO, Y.; ZHAO, F.; CHEN, H. Aerosol polarized phase function and single-scattering albedo retrieved from ground-based measurements. Disponível em www.sciencedirect.com.

5 – BORDE, R.; VERDEBOUT, J.. Remote sensing of aerosols optical thickness over various sites using SeaWifs or VEGETATION and ground measurements. Disponível em www.sciencedirect.com