ESTUDO DE MECANISMOS DE CINÉTICA QUÍMICA DETALHADOS VIA TABULAÇÃO ADAPTATIVA *IN SITU*

Aluno: Americo Barbosa da Cunha Junior Orientador: Luís Fernando Figueira da Silva

1 Introdução

O estudo do processo de combustão requer a descrição dos mecanismos cinéticos das reações químicas elementares envolvidas no processo. Tipicamente, um mecanismo detalhado de cinética química para a descrição da reação de hidrocarbonetos com ar envolve algumas dezenas de espécies, centenas de reações elementares e escalas de tempo que variam em até nove ordens de grandeza.

A utilização de mecanismos detalhados de cinética química para a modelagem da combustão é uma tarefa que demanda grande esforço computacional. Essa dificuldade leva a necessidade de se desenvolver técnicas que permitiam a redução do custo computacional do problema a ser resolvido.

Uma nova metodologia para o tratamento de mecanismos detalhados de cinética química em problemas de combustão foi proposta por Pope, [8]. Esta nova técnica denomina-se tabulação adaptativa *in situ (in situ adaptive tabulation)*, ISAT, e permite obter uma redução do tempo de computação em até três ordens de grandeza.

Este trabalho visa estudar a técnica ISAT, implementar a mesma em um código computacional existente e realizar testes de verificação funcional do mesmo. Após a verificação funcional, a eficiência computacional da metodologia implementada será testada.

2 Formulação do problema

Dado um escoamento reativo, o estado termodinâmico da mistura reativa pode ser caracterizado pela fração de massa das espécies químicas envolvidas Y_i ($i = 1, 2, ..., n_s$), entalpia h e pressão *p*. Uma maneira compacta de se representar o estado termodinâmico é através de um vetor,

$$\hat{\phi} = \{h, p, Y_1, Y_2, \dots, Y_{n_s}\},\tag{1}$$

o qual não possui todas as componentes linearmente independentes, pois as frações de massa tem sua soma igual a unidade,

$$\sum_{i=1}^{n_s} Y_i = 1,$$
(2)

e o número de átomos de cada elemento químico ao longo da reação é preservado

$$\sum_{i=1}^{n_e} \mathcal{A}_{ij} = cte \qquad j = 1, 2, \cdots, n_s,$$
(3)

onde \mathcal{A}_{ij} é o número de átomos do elemento químico *i* na espécie química *j*, n_s e n_e são respectivamente o número de espécies químicas e o número de elementos químicos presentes no mecanismo de reação.

Assim, o número de graus de liberdade de $\hat{\phi}$ no espaço termodinâmico é

$$D = 2 + n_s - n_e - 1. (4)$$

Define-se a composição (*compositon*)

$$\boldsymbol{\phi} = \{\phi_1, \phi_2, \dots, \phi_D\},\tag{5}$$

como o vetor cujas componentes formam um conjunto linearmente independente das componentes de $\hat{\phi}$. Essa definição tem como consequência que o estado termodinâmico da mistura reativa passa a ser completamente determinando por ϕ .

Do tratamento da composição como um vetor, é imediato que esta faz parte de um espaço vetorial de dimesão *D*, denominado espaço de composição. A região deste espaço formada por todos os valores possíveis chama-se região realizável.

A taxa de evolução da composição é dada pelo sistema de equações diferenciais ordinarias (edo's) de primeira ordem

$$\frac{d\phi}{dt} = \mathbf{S}[\phi(t)] + \mathbf{M}(t), \tag{6}$$

onde S é a taxa de variação devida à reação química e M é a taxa de variação devida ao transporte das espécies químicas.

O termo de cinética química, **S**, tem sua evolução dada pela lei de Arrhenius, [11]. Este termo possui uma depedência fortemente não linear com a tempetarura.

A modelagem do termo de transporte, **M**, não será tratada neste trabalho, mas pode ser encontrada em [3].

Usualmente, a equação de evolução da composição, (6), é resolvida a partir de um tempo inicial t_0 para um intervalo de tempo Δt em duas em etapas:

1. Dada a condição inicial $\phi(t_0)$, a equação de transporte

$$\frac{d\phi(t)}{dt} = \mathbf{M}(t),\tag{7}$$

é integrada e a solução denominada ϕ^0 .

2. Dada a condição inicial ϕ^0 , a equação de cinética química

$$\frac{d\phi(t)}{dt} = \mathbf{S}[\phi(t)],\tag{8}$$

é integrada para se obter uma aproximação para $\phi(t_0 + \Delta t)$.

O problema tratado pela metodologia ISAT é a solução da eq. (8), a partir de um tempo t_0 , para um intervalo Δt fixo e um grande número de condições iniciais ϕ^0 .

As soluções da eq. (8) correspondem a trajetórias no espaço de composição. Conforme o intervalo de tempo Δt aumenta, a trajetória tende ao equilíbrio químico, como ilustra a figura 1.

Figura 1: Trajetória no espaço de composição rumo ao equilíbrio químico.

A solução da eq. (8), a partir de t_0 , para um Δt fixo e condição inicial ϕ^0 , denotada por $\mathbf{R}(\phi^0, \Delta t)$, é denominada mapeamento da reação (*reaction mapping*), pois a integração da equação de cinética química mapeia a condição inicial $\phi(t_0) = \phi^0$ num valor igual a $\phi(t_0 + \Delta t) = \mathbf{R}(\phi^0, \Delta t)$.

3 Soluções aproximadas

3.1 Integração direta

A maneira imediata de resolver o problema é realizar uma integração numérica do sistema de equações de evolução. Esta solução é denominada integração direta (*direct integration*), DI.

Devido a não linearidade da eq. (6), uma solução via DI se torna inviável quando se deseja modelar problemas de combustão realistas utilizando mecanismos de cinética química envolvendo dezenas de espécies químicas.

3.2 Redução de mecanismo

Uma solução alternativa é a redução do número de graus de liberdade do mecanismo de cinética química no espaço termodinâmico.

Uma vez realizado o processo de redução pode-se usar DI para resolver o sistema edo's.

Nota-se, porém que a redução do mecanismo de cinética química sempre acarreta perda de informação contida neste.

4 Tabualação adaptativa *in situ* (ISAT)

Nesta seção é descrita a técnica de tabulação para o tratamento de mecanismos detalhados de cinética química, [8].

4.1 Região acessível

A região acessível do espaço de composição durante um processo de combustão é definida como o conjunto de composições ϕ que podem efetivamente ser realizadas a partir de uma condição inicial ϕ^0 . Nota-se que a região acessível é bem menor que a região realizável no espaço D-dimensional.

Assim, um método de tabulação, em vez de tratar toda a região realizável, necessita somente acessar a região acessível.

A forma da região acessível é desconhecida antes da solução da equação de evolução. Por isso os valores calculados são sequencialmente tabelados durante a solução do escoamento reativo. Este processo é conhecido como tabulação *in situ*. Cada valor tabelado corresponde a uma composição que ocorre durante a reação química.

4.2 Mapeamento linear

A tabela criada pelo processo de tabulação armazena informação sobre o mapeamento da reação $\mathbf{R}(\phi^0, t)$ para um ponto particular de tabulação ϕ^0 .

A figura 2 ilustra duas trajetórias, uma partindo de ϕ^0 e outra de um ponto próximo (query point) ϕ^q .

Figura 2: Mapeamentos das reações iniciando em ϕ^0 e ϕ^q , além das definições de $\delta \phi$ e $\delta \mathbf{R}$.

Nesta figura os deslocamentos na condição inicial $\delta \phi$ e no mapeamento $\delta \mathbf{R}$ são definidos como

$$\phi^q = \phi^0 + \delta\phi, \tag{9}$$

e

$$\mathbf{R}(\phi^q, t) = \mathbf{R}(\phi^0, t) + \delta \mathbf{R}.$$
(10)

Na tabela também é conveniente armazenar a matriz gradiente do mapeamento (*mapping gradient matrix*) $\mathbf{A}(\phi^0, t)$, definida como

$$A_{ij}(\phi, t) \equiv \frac{\partial R_i(\phi, t)}{\partial \phi_j}.$$
(11)

A matriz gradiente do mapeamento exprime a sensibilidade do mapeamento da reação a mudanças nas condições iniciais do problema.

Derivando-se no tempo a eq. (11), tem-se

$$\frac{d}{dt}\mathbf{A}(\phi^0, t) = \mathbf{J}[\phi^0(t)]\mathbf{A}(\phi^0, t),$$
(12)

onde J é a matrix jacobiana

$$J_{ij} \equiv \frac{\partial S_i(\phi)}{\partial \phi_j},\tag{13}$$

e a condição inicial do sistema é

$$\mathbf{A}(\boldsymbol{\phi}^0, 0) = \mathbf{I}.\tag{14}$$

A partir dos elementos tabulados pode-se obter uma aproximação linear para $\mathbf{R}(\phi^q, t)$ dada por

$$\mathbf{R}(\phi^{q},t) \approx \mathbf{R}^{l}(\phi^{q},t) \equiv \mathbf{R}(\phi^{0},t) + \delta \mathbf{R}^{l}, \qquad (15)$$

onde

$$\delta \mathbf{R}^l \equiv \mathbf{A} \delta \phi. \tag{16}$$

As características da matriz gradiente de mapeamento podem ser melhor apreciadas utilizandose a decomposição SVD (*Singular Value Decomposition*) da matriz **A**, [5],

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T, \tag{17}$$

onde U e V são matrizes unitárias e Σ é uma matriz diagonal cujos elementos ordenados, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_D \ge 0$, são os valores singulares de A.

Utilizando a decomposição SVD apresentada em (17) pode-se fazer uma mudança de base na eq. (16), reescrevendo-a como

$$\delta \hat{R}_i^l = \sigma_i \delta \tilde{\phi}_i \qquad i = 1, 2, \cdots, D \tag{18}$$

onde

$$\delta \hat{\mathbf{R}}^{l} \equiv \mathbf{U}^{T} \delta \mathbf{R}^{l}, \tag{19}$$

e

$$\delta\tilde{\boldsymbol{\phi}} \equiv \mathbf{V}^T \delta \boldsymbol{\phi}. \tag{20}$$

Os valores singules σ_i representam a sensibilidade de $\mathbf{R}(\phi, t)$ a perturbações em ϕ na direção singular *i*.

4.3 Erro local

Para fins de determinação do erro local de aproximação é definida a matriz **B**, denominada matriz de escala. Utilizando-se a norma euclidiana defini-se o erro local ε como

$$\boldsymbol{\varepsilon} \equiv |\mathbf{B}\left[\mathbf{R}(\boldsymbol{\phi}^{q},t) - \mathbf{R}^{l}(\boldsymbol{\phi}^{q},t)\right]| = |\mathbf{B}[\boldsymbol{\delta}\mathbf{R} - \boldsymbol{\delta}\mathbf{R}^{l}]|.$$
(21)

Nota-se que uma mudança de escala na composição \$\$\$\$ \$\$\$\$\$ \$\$\$\$ definida como

$$\boldsymbol{\Psi} = \mathbf{B}\boldsymbol{\phi}. \tag{22}$$

4.4 Região de precisão

A precisão do método de tabulação é controlada pela aproximação linear \mathbf{R}^l no ponto ϕ^0 somente se o erro local for menor que uma determinada tolerância ε_{tol} . A região de precisão é definida como a região conexa de pontos ϕ^q , centrada no ponto ϕ^0 , na qual o erro local ε é menor que a tolerância ε_{tol} . A figura 3 mostra um esboço desta região.

Para investigar a precisão do método tome uma aproximação constante ao invés de uma aproximação linear, ou seja,

$$\mathbf{R}(\phi^q, t) \approx \mathbf{R}^c(\phi^q, t) \equiv \mathbf{R}(\phi^0, t).$$
(23)

Agora o erro local é dado por

$$\boldsymbol{\varepsilon}_{c} \equiv |\mathbf{B}[\mathbf{R}(\boldsymbol{\phi}^{q}, t) - \mathbf{R}^{c}(\boldsymbol{\phi}^{q}, t)]|, \qquad (24)$$

que pode ser simplificado

$$\mathbf{\varepsilon}_c = |\mathbf{B} \, \mathbf{A} \delta \phi|. \tag{25}$$

Figura 3: Região de precisão em torno do ponto ϕ^0 .

Na fronteira da região de precisão o erro ε_c é igual à tolerância ε_{tol} ,

$$\boldsymbol{\varepsilon}_{tol}^2 = \boldsymbol{\varepsilon}_c^2 = \boldsymbol{\delta} \boldsymbol{\phi}^T \mathbf{A}^T \mathbf{B}^T \mathbf{B} \mathbf{A} \boldsymbol{\delta} \boldsymbol{\phi}.$$
(26)

Note que a matriz simétrica positiva semi-definida $\mathbf{A}^T \mathbf{B}^T \mathbf{B} \mathbf{A} / \boldsymbol{\varepsilon}_{tol}^2$ pode ser expressa como

$$\mathbf{A}^T \mathbf{B}^T \mathbf{B} \mathbf{A} / \boldsymbol{\varepsilon}_{tol}^2 = \mathbf{Q} \mathbf{A} \mathbf{Q}^T,$$
(27)

onde **Q** é uma matriz unitária e **A** é uma matriz diagonal cujos elementos $\lambda_1, \lambda_2, \dots, \lambda_D$ são não negativos.

Dividindo por ε_{tol}^2 e utilizando a eq. (27) pode-se reescrever a eq. (26) como

$$1 = \delta \phi^T \mathbf{Q}^T \mathbf{A} \mathbf{Q} \delta \phi, \qquad (28)$$

o que mostra que a região de precisão tem a forma de um hiper-elipsóide cujos semi-eixos principais são $l_i = 1/\sqrt{\lambda_i}$.

Caso a matriz de escala **B** seja igual a identidade e utilizando-se a decomposição SVD de **A**, o lado esquerdo da eq. (27) pode ser reescrito como

$$\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{T}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{T}/\boldsymbol{\varepsilon}_{tol}^{2} = \mathbf{V}\left(\frac{\boldsymbol{\Sigma}}{\boldsymbol{\varepsilon}_{tol}}\right)^{2}\mathbf{V}^{T}.$$
(29)

Neste caso tem-se

$$\mathbf{\Lambda} = \left(\frac{\mathbf{\Sigma}}{\mathbf{\varepsilon}_{tol}}\right)^2,\tag{30}$$

logo os semi-eixos principais do hiper-elipsóide são iguais à

$$l_i = \varepsilon_{tol} / \sigma_i. \tag{31}$$

Obviamente o maior valor singular exerce grande influência na forma da região de precisão.

O método ISAT representa e faz uma estimativa para a região de precisão segundo as seguintes regras:

 Supõe-se que a região de precisão, para o ponto de tabulação φ⁰, é bem aproximada por um hiper-elipsóide. Este hiper-elipsóide é chamado elipsóide de precisão (*ellipsoid of accuracy*), EOA, e é representado por duas matrizes, uma unitária Q e outra diagonal Λ. O ponto próximo φ^q = φ⁰ + δφ está dentro do EOA se satisfazer

$$\delta \phi^T \mathbf{Q}^T \Lambda \mathbf{Q} \delta \phi \le 1. \tag{32}$$

2. Baseado na eq. (27), uma estimativa inicial e conservativa para o EOA é

$$\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \tilde{\mathbf{A}}^T \mathbf{B}^T \mathbf{B} \tilde{\mathbf{A}} / \varepsilon_{tol}^2, \tag{33}$$

onde \tilde{A} é uma modificação de A com o objetivo de evitar valores singulares muito pequenos. A decomposição SVD de \tilde{A} é

$$\tilde{\mathbf{A}} = \mathbf{U}\tilde{\boldsymbol{\Sigma}}\mathbf{V}^T,\tag{34}$$

onde o valor singular $\tilde{\sigma}_i$ é igual à max{ $1/2, \sigma_i$ }.

3. Se durante os cálculos um ponto próximo ϕ^q se encontrar na região de precisão (*i.e.* $\varepsilon \le \varepsilon_{tol}$), mas fora da estimativa do EOA, este último cresce (aumenta o hiper-volume). Este crescimento é ilustrado na figura 4. O novo EOA é o hiper-elipsóide de menor hiper-volume cujo centro é ϕ^0 e contém tanto ϕ^q como o antigo EOA.

Figura 4: Crescimento do elipsóide de precisão.

4.5 Tabulação

Em termos funcionais, o código computacional que implementa a metodologia ISAT pode ser dividido em três módulos como mostrado na figura 5.

Inicialmente o módulo que define a física do problema, RFC, fornece ao ISAT o passo de tempo Δt , a matrix de escala **B** e a tolerância ε_{tol} . Em seguida, num primeiro momento, RFC

transfere a próxima composição, ϕ^q , ao ISAT que retorna o mapeamento correspondente $\mathbf{R}(\phi^q)$.

Figura 5: Módulos funcionais de um código computacional que utilize a metodologia ISAT.

Conforme os cálculos avançam e novas composições são recebidas, ISAT constrói uma tabela em forma de árvore binária. As informações necessárias para a construção da tabela são obtidas do módulo de integração das equações governantes, RMC.

Figura 6: Árvore binária. Nós em branco e folhas em preto.

A árvore binária, mostrada na figura 6, consiste de elementos de dois tipos: nós e folhas.

Cada folha da árvore guarda as seguintes informações:

- \$\overline{0}\$: ponto de tabulação;
- $\mathbf{R}(\phi^0, \Delta t)$: mapeamento da reação em ϕ^0 ;
- $\mathbf{A}(\phi^0, \Delta t)$: matriz gradiente do mapeamento em ϕ^0 ;
- **Q**: matriz unitária do EOA:
- λ : elementos da diagonal da matriz Λ associada ao EOA.

Os três primeiros itens $[\phi^0, \mathbf{R}(\phi^0, \Delta t) \in \mathbf{A}(\phi^0, \Delta t)]$ são calculados somente uma vez, enquanto que os demais ($\mathbf{Q} \in \boldsymbol{\lambda}$) mudam sempre que o EOA cresce.

Quando o primeiro pronto próximo ϕ^q é recebido, o primeiro armazenamento ocorre ($\phi^0 = \phi^q$), e a árvore binária é iniciada como uma simples folha. O valor exato do mapeamento $\mathbf{R}(\phi^0, \Delta t)$ é retornado.

- O algoritimo para as etapas seguintes é:
- 1. Dada uma composição próxima ϕ^q , a árvore binária e percorrida até que uma folha (ϕ^0) seja encontrada.
- 2. Utiliza-se a eq. (32) para determinar se ϕ^q está ou não dentro do EOA.
- 3. Se ϕ^q estiver dentro do EOA, a aproximação linear

$$\mathbf{R}^{l}(\phi^{q},\Delta t) = \mathbf{R}(\phi^{0},\Delta t) + \mathbf{A}(\phi^{0},\Delta)(\phi^{q} - \phi^{0})$$
(35)

é retornada. Esta é a primeira de três possibilidades, chama-se recuperação (R).

- No caso de φ^q estar fora do EOA utiliza-se DI para determinar o mapeamento da reação e o erro é medido com a eq. (21).
- 5. Se o erro estiver dentro da tolerância ε_{tol} , o EOA cresce e $\mathbf{R}(\phi^q, \Delta t)$ é retornado. Está saída denomina-se crescimento (G).
- 6. Caso o erro seja maior que a tolerância ε_{tol} uma nova entrada baseada em ϕ^q é armazenada na árvore binária. A figura 7 mostra a definição de um plano de corte (*cutting plane*) por um vetor v e um escalar a tais que todos os pontos com $v^T \phi > a$ estejam à direita do plano de corte e todos os outros a esquerda. A orientação de v é de tal forma de ϕ^q esteja à direita e ϕ^0 a esquerda. Em seguida a árvore binária é alterada conforme o mostrado na figura 8. A folha original (ϕ^0) é substituida por um nó em que o par (v,a) é armazenado. A folha esquerda deste nó corresponde a composição antiga ϕ^0 , enquanto que a folha direita corresponde a nova composição ϕ^q . Esta saída denomina-se adição (A).

5 Resultados parciais

Um código computacional, em C++, que implementa a técnica ISAT para a solução de problemas que envolvem escoamentos reativos encontra-se em fase de verificação funcional. Nesta etapa testes vem sendo realizados a fim de verificar o funcionamento das funções e rotinas, bem como a comunicação entre o código e outros pacotes auxiliares. Estes pacotes auxiliares são o pacote de rotinas químicas *CHEMKIN*^(R), [6], o pacote de rotinas numéricas *GSL*, [4], e os

Figura 8: Árvore binária antes e depois da adição de um novo nó.

solvers para sistemas de edo's não lineares CVODE, [1], e DASSLC, [9].

Um resumo, descrevendo os resultados parciais obtidos até o presente momento, foi publicado no XIV Congresso Nacional de Estudantes de Engenharia Mecânica, [2].

6 Considerações finais

Resultados na literatura, [7] e [10], tem mostrado que a técnica ISAT oferece uma elevada relação custo/benefício no tratamento de problemas complexos de combustão, pois fornece resultados de acurácia satisfatória em tempo viável de computação.

Devido a baixa quantidade de publicações sobre a metodologia ISAT em português, não existe um consenso sobre a nomeclatura de seus termos técnicos na língua portuguesa. Por isto optou-se por utilizar tradução livre, seguida dos termos em inglês, nas definições.

7 Agradecimentos

Ao professor Guenther Carlos Krieger Filho e a equipe do Laboratório de Engenharia Térmica e Energia da USP, pelo código que serviu de base ao que se encontra em fase de testes e pela hospitalidade. Ao CNPq/PIBIC pelo apoio financeiro.

Referências

- COHEN, S. D., HINDMARSH, A. C. CVODE User Guide. Livermore: Lawrence Livermore National Laboratory, 1994.
- [2] CUNHA JUNIOR, A. B., FIGUEIRA DA SILVA, L. F. Estudo de Mecanismos de Cinética Química Detalhados via Tabulação Adaptativa *In Situ* (resumo). XIV Congresso Nacional de Estudantes de Engenharia Mecânica, Uberlândia: Universidade Federal de Uberlândia, 2007.
- [3] FOX, R. O. Computational Models for Turbulent Reacting Flows. Cambridge: Cambridge Univ. Press, 2003. 419 p.
- [4] GALASSI, M. et. al. GNU Scientific Library Reference Manual Edition 1.8. Boston: Free Software Foundation, Inc., 2006.
- [5] GOLUB, G. H., VAN LOAN, C. F. Matrix Computations. 3rd ed. Baltimore: John Hopkins University Press, 1996. 694p.
- [6] KEE, R. J., RUPLEY, F. M., MILLER, J. A. Chemkin-II: A Fortran Chemical Kinetics Packages for the Analysis of Gas Phase Chemical Kinetics. Livermore: Sandia National Laboratories, 1989. 127 p.
- [7] LIU, B. J. D., POPE, S. B. The performance of *in situ* adaptive tabulation in computations of turbulent flames. **Combustion Theory Modelling**, v.9, p. 549-568, 2005.
- [8] POPE, S. B. Computationally efficient implementation of combustion chemistry using *in situ* adaptive tabulation. **Combustion Theory Modelling**, v.1, p. 41-63, 1997.
- [9] SECCHI, A. R. DASSLC User's Manual Version 3.0. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2007.
- [10] SINGER, M. A. POPE, S. B., NAJM, H. N. Operator-splitting with ISAT to model reacting flow with detailed chemistry. Combustion Theory Modelling, v.10, p. 199-217, 2006.
- [11] WILLIAMS, F. A. Combustion theory: the fundamental theory of chemicalily reacting flow systems. 2nd ed. Cambridge: Perseus books, 1985. 680 p.