ANTENAS DE BANDA LARGA

Aluno: Lucas Lago Monteiro Orientador: José Ricardo Bergmann

Introdução

No mundo atual tem havido um elevado aumento da demanda de serviços de telecomunicações que se utilizam de uma faixa de banda larga, tais como TV digital e internet. Porém, a instalação destes serviços por meio de cabos, como tem sido feito na maioria dos casos, torna-se muito caro, pois é preciso realizar obras por toda a cidade para que a informação chegue ao seu destino. O desenvolvimento das antenas omnidirecionais de banda larga permite que a instalação destes serviços seja feita em muito menos tempo e com custos muito mais baixos.

Diagramas omnidirecionais podem ser obtidos através de antenas formadas por refletores circularmente simétricos. Este estudo considerou o caso de antenas de duplos refletores gerados por curvas cônicas confocais clássicas com eixos deslocados, onde para o caso Cassegrian foi denominada OADC para o caso Gregoriano OADE. A geratriz destas superfícies circularmente simétricas tem para o refletor principal uma parábola e para o subrefletor uma hipérbole ou uma elipse, conforme o sistema seja OADC ou OADE, respectivamente. Foi utilizado o programa MATLab para se obter o comportamento do sinal nestas antenas e estudá-lo com mais clareza.

Objetivos

Estudar o comportamento do sinal na abertura da antena para as diferentes formas geométricas das antenas bi refletoras omnidirecionais clássicas de banda larga. Além disto, estudou-se a distribuição de campo na abertura utilizando técnicas de traçado de raios.

Metodologia

Como vimos, a antena OADC possui um refletor principal parabólico e um subrefletor hiperbólico. A parábola, que pode ser vista na Figura 1, é uma seção cônica que possui excentricidade igual a um, possui um foco real e o outro no infinito, onde, segundo os princípios da ótica geométrica, qualquer raio que, emergindo de seu foco real e interceptar a parábola, sairá paralelo ao seu eixo de simetria. Na antena OADC, expressa nas coordenadas y,z, o refletor principal parabólico se encontra com o seu eixo de simetria paralelo à coordenada y, deslocado para cima e para a esquerda.

No caso da hipérbole (também pode ser vista na Figura 1) temos que a sua excentricidade é maior do que um, i.e., ela possui dois focos, sendo um deles real e o outro virtual, onde qualquer raio que, emergindo de um de seus focos e interceptando a hipérbole será refletido na direção ao outro foco. Através da sua equação em coordenadas retangulares podemos obter duas curvas, associadas à opção de sinal. Vemos assim que, para o subrefletor da antena OADC, expressa nas coordenadas y,z, utilizamos a parte negativa da hipérbole com o eixo que liga os dois focos fazendo um ângulo ß com a coordenada z. O foco real da hipérbole se encontra na origem do plano y,z (onde fica localizada a alimentação da antena), já o foco virtual coincide com o foco da parábola do refletor principal. Desta forma, um raio que emergindo da origem (alimentação da antena) incidir sobre o subrefletor ao ser refletido parecerá ter emergido do foco virtual da hipérbole, que é feito coincidir com o foco da parábola. Com isso, este raio será refletido em direção ao refletor principal e sairá paralelo ao eixo y. Considerando agora somente a parte positiva de y, rotacionamos estas cônicas em torno do eixo z, que será o eixo de simetria da antena. Temos agora que todo o sinal que sair

da origem irradiará para todas as direções em um plano x,y. Podemos ver o exemplo de uma antena OADC na Figura 2.

Figura 1. Configuração geométrica das seções cônicas como função da excentricidade e , para uma distância focal fixa f .

Figura 2. Exemplo de Geometria OADC.

Já a antena OADE possui também um refletor principal parabólico, como visto na antena OADC, porém com um subrefletor elipsoidal. A elipse, como pode ser vista na Figura 1, possui excentricidade maior que zero e menor que um, logo, a elipse possui dois focos reais. Sendo assim, um raio que, saindo de um de seus focos atingir a curva será refletido em direção ao outro foco. Para o subrefletor da antena OADE, expressa nas coordenadas y,z, utiliza-se uma elipse com um de seus focos centrado na origem (onde fica localizada a alimentação da antena) e o outro a uma distância de 2c em cima de um eixo que faz um ângulo - β com a coordenada z Este último foco coincide com o foco da parábola do refletor principal. Sendo assim, um raio que emergindo da origem incidir com a elipse será refletido em direção ao seu outro foco, coincidindo com o foco da parábola do refletor principal, incidindo assim na parábola e saindo paralelo à coordenada y. Considerando agora somente a parte positiva de y, rotacionamos estas cônicas em torno do eixo z, que será o eixo de simetria da antena. Temos agora que todo o sinal que sair da origem irradiará para todas as direções em um plano x,y. Podemos ver o exemplo de uma antena OADE na Figura 3.

Figura 3. Exemplo de Geometria OADE.

Do ponto de vista de engenharia, uma antena não é projetada com base em parâmetros associados às curvas geratrizes, tais como excentricidade, deslocamentos da origem e ângulos de inclinação, como vimos até agora. É necessário utilizar equações que transformem estes valores em parâmetros dimensionais da antena e vice-versa. Parâmetros esses como a largura da abertura da antena (W_A), o diâmetro do refletor (D_M) e do espaço central (D_B) do refletor

principal, a distância (V_s) entre o foco principal O e o vértice do subrefletor Q, e a distância (z_B) no eixo z do topo do refletor principal L à origem O.

No caso da antena OADC, temos as seguintes expressões:

$$\tan \boldsymbol{q}_1 = \frac{-D_B}{2(V_S - z_B)} \tag{1}$$

Que nos permite determinar o valor do ângulo q_1 .

$$\frac{D_{M} - D_{B}}{2W_{A}} = \frac{1 - \tan(\boldsymbol{q}_{1}/2)\tan(\boldsymbol{q}_{2}/2)}{\left[1 + \tan(\boldsymbol{q}_{1}/2)\right]\left[1 + \tan(\boldsymbol{q}_{2}/2)\right]}$$
(2)

Nos permite determinar o valor do ângulo \boldsymbol{q}_2 .

Da equação abaixo temos a distância focal da parábola do refletor principal.

$$F = \frac{W_{A} [1 + \tan(\boldsymbol{q}_{1}/2)] [1 + \tan(\boldsymbol{q}_{2}/2)]}{4 [\tan(\boldsymbol{q}_{1}/2) - \tan(\boldsymbol{q}_{2}/2)]}$$
(3)

A distância entre focos 2c e o ângulo **b** do eixo formado pelos focos e o eixo z podem ser obtidos através destas duas expressões.

$$2c\sin\left(\boldsymbol{b}-\boldsymbol{q}_{1}\right)=-V_{s}\sin\boldsymbol{q}_{1} \tag{4}$$

$$2c\sin\left(\boldsymbol{b}-\boldsymbol{q}_{2}\right) = \left(W_{A}-z_{B}\right)\sin \boldsymbol{q}_{2} + \left(D_{M}/2\right)\cos \boldsymbol{q}_{2}$$
(5)
b) pode-se obter

A partir de (4) e (5) pode-se obter

$$2c\sin \boldsymbol{b} = \left[\frac{D_M + 2(V_S + W_A - z_B)\tan \boldsymbol{q}_2}{2(\tan \boldsymbol{q}_1 - \tan \boldsymbol{q}_2)}\right] \tan \boldsymbol{q}_1$$
(6)

$$2c\cos \boldsymbol{b} = \frac{D_M + 2V_S \tan \boldsymbol{q}_1 + 2(W_A - z_B)\tan \boldsymbol{q}_2}{2(\tan \boldsymbol{q}_1 - \tan \boldsymbol{q}_2)}$$
(7)

Consequentemente, podemos obter os valores de $2c \in b$.

Finalmente, a excentricidade e do subrefletor hiperbólico é dada pela equação

$$\frac{2c}{e} = V_s - \frac{2c\sin \mathbf{b}}{\sin \mathbf{q}_1} \tag{8}$$

Neste ponto a superfície dos refletores está completamente determinada. Porém, dois outros parâmetros são também importantes para análises: o ângulo máximo q_E e o diâmetro D_s do subrefletor. Eles podem ser determinados por

$$\frac{2c}{\sin\left(\boldsymbol{q}_{E}-\boldsymbol{q}_{2}\right)}=\frac{\left|D_{s}/\sin\left(\boldsymbol{q}_{E}\right)\right|}{2\sin\left(\boldsymbol{b}-\boldsymbol{q}_{2}\right)}=\frac{(4c/e)-\left|D_{s}/\sin\left(\boldsymbol{q}_{E}\right)\right|}{2\sin\left(\boldsymbol{b}-\boldsymbol{q}_{E}\right)}$$
(9)

pela qual, junto com (4) e (8), pode-se obter

$$\tan\left(\frac{\boldsymbol{q}_{E}}{2}\right) = \frac{\tan(\boldsymbol{q}_{2}/2) - \tan(\boldsymbol{q}_{1}/2)}{1 - [2\cot\boldsymbol{b} + \tan(\boldsymbol{q}_{2}/2)]\tan(\boldsymbol{q}_{1}/2)}$$
(10)

$$D_{s} = \frac{4c|\sin \boldsymbol{q}_{E}|\sin(\boldsymbol{b}-\boldsymbol{q}_{2})}{\sin(\boldsymbol{q}_{E}-\boldsymbol{q}_{2})}$$
(11)

Para o caso da antena OADE, temos as expressões abaixo:

O ângulo \boldsymbol{q}_1 agora é dado por

$$\tan \mathbf{q}_{1} = \frac{-D_{M}}{2(V_{S} - z_{B} + W_{A})}$$
(12)

Para se obter o ângulo q_2 pode-se utilizar ainda a expressão (2). Porém, devido a inversão entre q_1 e q_2 , (3) tem que ter o seu sinal trocado

$$F = \frac{-W_A \left[1 + \tan(\boldsymbol{q}_1/2) \left[1 + \tan(\boldsymbol{q}_2/2)\right]\right]}{4 \left[\tan(\boldsymbol{q}_1/2) - \tan(\boldsymbol{q}_2/2)\right]}$$
(13)

Os parâmetros $2c \in \mathbf{b}$ podem ser obtidos através das expressões abaixo.

$$2c\sin \boldsymbol{b} = \left[\frac{D_B + 2(V_S - z_B)\tan \boldsymbol{q}_2}{2(\tan \boldsymbol{q}_1 - \tan \boldsymbol{q}_2)}\right] \tan \boldsymbol{q}_1$$
(14)

$$2c\cos\boldsymbol{b} = \frac{D_B + 2V_s \tan\boldsymbol{q}_1 + 2z_B \tan\boldsymbol{q}_2}{2(\tan\boldsymbol{q}_1 - \tan\boldsymbol{q}_2)}$$
(15)

A excentricidade do subrefletor elipsoidal ainda pode ser obtida a partir de (8). Finalmente, \boldsymbol{q}_E e D_s são ainda determinados por (10) e (11), respectivamente.

Com a ajuda do software MATLab foi desenvolvido um programa que tem como valores de entrada os parâmetros W_A , D_M , D_B , V_S , z_B , especificados acima, e plotasse a antena OADC com tais medidas. Para isso o programa converte estes parâmetros para valores significativos às cônicas em questão utilizando as equações acima. Em seguida, o programa calcula o refletor principal parabólico. Para isso, é criado um parâmetro d que corresponde a distância no eixo y entre o foco da parábola e a coordenada z. d é dado por

$$d = 2c\sin \boldsymbol{b} \tag{16}$$

Ele cria um vetor em y que vai de $D_B/2$ a $D_M/2$ e calcula a parábola através da equação

$$z = \sqrt{4F(y-h)} + k \tag{17}$$

Onde *F* é a distância focal, *h* é o deslocamento horizontal e *k* o deslocamento vertical da parábola. Neste caso, h = -(F + d) e $k = 2c \cos \mathbf{b}$.

Tendo isto sido feito, o programa agora calcula a hipérbole a partir de seus parâmetros tais como a excentricidade e e seus valores a, b e c, onde

$$a = \frac{c}{e} \tag{18}$$

$$b = \sqrt{c^2 - a^2} \tag{19}$$

Como a hipérbole será rotacionada de um ângulo **b** com o eixo z, o programa primeiro calcula uma hipérbole tendo o seu eixo principal paralelo ao eixo z e depois aplica a ela a rotação. Para isso, é preciso ser criado um vetor no eixo y de tal forma que, depois de ser rotacionada, a hipérbole comece em y = 0 e termine em $y = D_s/2$. Para se obter esses limites foi estudada a geometria da Figura 4.

A partir da figura, temos que

$$\boldsymbol{g} = 180^{\circ} - \boldsymbol{q}_{1}$$

$$\boldsymbol{a} = 180^{\circ} - \boldsymbol{g} - \boldsymbol{b} = 180^{\circ} - 180^{\circ} + \boldsymbol{q}_{1} - \boldsymbol{b}$$

$$\boldsymbol{a} = \boldsymbol{q}_{1} - \boldsymbol{b}$$

$$l = \frac{d}{\sin \boldsymbol{q}_{1}}$$

$$\boldsymbol{y}_{a} = l \sin \boldsymbol{a} = \frac{d}{\sin \boldsymbol{q}_{1}} \sin (\boldsymbol{q}_{1} - \boldsymbol{b})$$

$$h = \frac{d + D_{s}/2}{\sin \boldsymbol{q}_{2}}$$

$$\boldsymbol{q}_{2} = 180^{\circ} - \boldsymbol{q}_{2}$$
(20)

Centro de Estudos em Telecomunicação

$$\mathbf{a}' = 180^{\circ} - \mathbf{q}_{2} - \mathbf{q}_{1} = \mathbf{q}_{2} - \mathbf{q}_{1}$$

$$y_{b} = h \sin\left(\mathbf{a} + \mathbf{a}'\right) = \frac{d + D_{s}/2}{\sin \mathbf{q}_{2}} \sin\left(\mathbf{q}_{1} - \mathbf{b} + \mathbf{q}_{2} - \mathbf{q}_{1}\right)$$

$$y_{b} = \frac{d + D_{s}/2}{\sin \mathbf{q}_{2}} \sin\left(\mathbf{q}_{2} - \mathbf{b}\right)$$
(21)

Figura 4. Rotação de eixos.

Tendo agora esses valores, faz-se um vetor em y que varie de y_a a y_b . Em seguida, é calculado a hipérbole através da equação da hipérbole em coordenadas retangulares no plano y,z com o seu eixo principal paralelo ao eixo z.

$$\frac{(z-k)^2}{a^2} - \frac{(y-h)^2}{b^2} = 1$$
(22)

Neste caso, k = c e h = 0.

Agora a hipérbole é rotacionada de um ângulo \boldsymbol{b} através da matriz de rotação dada por

$$z' = z\cos \boldsymbol{b} - y\sin \boldsymbol{b} \tag{23}$$

$$y' = y\cos \boldsymbol{b} - z\sin \boldsymbol{b} \tag{24}$$

Com isto a antena já está pronta. Agora, porém, o programa traça os raios que sairão da origem (alimentação da antena) até saírem pela abertura principal. Para isso, é criado um vetor de ângulos variando de 0 a \boldsymbol{q}_E . O raio da hipérbole é dado pela equação da hipérbole em coordenadas polares, estando um de seus focos na origem.

$$r = \frac{a(e^2 - 1)}{1 - e\cos q} \tag{25}$$

Porém, como deseja-se a curva negativa da hipérbole, o sinal negativo do denominador deverá ser invertido. Temos então a nova equação

$$r = \frac{a(e^2 - 1)}{1 + e\cos q} \tag{26}$$

Agora é preciso calcular o ângulo no qual o raio será refletido em direção a parábola. Para isso, foi estudada a geometria da Figura 5.

Podemos tirar através da figura a expressão para este ângulo como sendo

$$\tan \mathbf{q}' = \frac{2c\cos \mathbf{b} - r\sin \mathbf{q}}{d + r\cos \mathbf{q}}$$
(27)

onde d é dado pela expressão (16).

Através da equação da parábola em coordenadas polares temos a dimensão do raio da parábola.

$$r = \frac{2a}{1 - \cos q} \tag{28}$$

Figura 5. Análise de ângulos.

Com isso é feito um loop no programa traçando os raios com um ângulo q variando de 0 a q_E . Por fim, é feito a plotagem de todos estes dados, obtendo assim a Figura 6, onde neste exemplo temos que $W_A = 10I$, $D_M = 34,6I$, $D_B = 2I$, $V_S = 4,69I$, $z_B = -1I$.

Em seguida, foi programado de forma similar à OADC um programa para traçar os raios de uma antena OADE. Os valores de entrada também são dados pelos parâmetros W_A , D_M , D_B , V_S , z_B , que podem ser calculados através das expressões apresentadas acima. Após terem sido efetuados estes cálculos o programa calcula o refletor principal parabólico, para isso também se cria um parâmetro d que corresponde a distância no eixo y entre o foco da parábola e a coordenada z. d é dado por (16).

O refletor principal parabólico é calculado da mesma forma que na OADC criando um vetor em y que vai de $D_B/2$ a $D_M/2$ e calcula a parábola através da equação (17).

Como o subrefletor elipsoidal também faz um ângulo **b** com o eixo z, assim como no caso OADC, é calculada primeiro uma elipse com o seu eixo principal paralelo ao eixo y e depois é que rotacionamos ela. Para criarmos um vetor em y de tal forma que após rotacionarmos a elipse ela fique entre 0 e $D_s/2$ é preciso, mais uma vez, analisar a geometria da Figura 7.

Figura 6. Exemplo de traçado de raios de uma OADC.

Figura 7. Rotação de eixos.

Vemos então que

$$\cos \boldsymbol{b} = \frac{y_a}{V_s}$$

$$y_{a} = V_{s} \cos \mathbf{b}$$
(29)

$$g = \mathbf{b} - \mathbf{q}_{E}$$

$$\sin \mathbf{q}_{E} = \frac{D_{s}/2}{l}$$

$$l = \frac{D_{s}/2}{\sin \mathbf{q}_{E}}$$

$$\cos g = \frac{y_{b}}{l}$$

$$y_{b} = l \cos g$$

$$= \frac{D_{s}/2}{\sin \mathbf{q}_{E}} \cos(\mathbf{b} - \mathbf{q}_{E})$$
(30)

Com esses valores faz-se um vetor em y que varie de y_a a y_b . É preciso também determinar os valores de *a* e *b* da elipse, onde a é dado por (18) e

 y_b

$$b = \sqrt{a^2 - c^2} \tag{31}$$

A elipse é então calculada através da equação da elipse em coordenadas retangulares que é dada por

$$\frac{(y-h)^2}{a^2} + \frac{(z-k)^2}{b^2} = 1$$
(32)

Aplica-se uma rotação na elipse de um ângulo \boldsymbol{b} através de (23) e (24).

Para o traçado de raios nesta antena cria-se um vetor de ângulos variando de 0 a q_E . Utiliza-se a equação da elipse em coordenadas polares com um de seus focos centrado na origem para o traçado do raio que emergir da origem (alimentação da antena) e encontrar a elipse. Esta equação é dada por

$$r = \frac{a(1-e^2)}{1-e\cos a} \tag{33}$$

É preciso, mais uma vez, calcular o ângulo no qual o raio será refletido em direção a parábola. Para isso, foi estudada a geometria da Figura 8.

Podemos tirar através da figura a expressão para este ângulo como sendo

$$\tan \mathbf{j} = \frac{r\cos \mathbf{q} - d}{r\sin \mathbf{q} - 2c\cos \mathbf{b}}$$
(34)

onde d é dado pela expressão (16), e

$$\boldsymbol{q}' = \boldsymbol{j} + 90^{\circ} \tag{35}$$

Com isso, podemos calcular o tamanho do raio que sai de seu foco e se encontra com a parábola através de (28).

É feito então um loop no programa traçando os raios com um ângulo q variando de 0 a q_E . Por fim, é feito a plotagem de todos estes dados, obtendo assim a Figura 9, onde neste exemplo temos que $W_A = 10\mathbf{I}$, $D_M = 34,6\mathbf{I}$, $D_B = 2\mathbf{I}$, $V_S = 4,69\mathbf{I}$, $z_B = -1\mathbf{I}$.

Centro de Estudos em Telecomunicação

Figura 8. Análise de ângulos.

Figura 6. Exemplo de traçado de raios de uma OADE.

Assim, conclui-se o programa nos permitindo ter uma excelente visão do comportamento dos raios nestas antenas, OADC e OADE, através da análise da ótica geométrica.

Conclusões

Através deste estudo somos capazes de analisar o comportamento do sinal na abertura de saída destas antenas e ver a diferença deste sinal para esses diferentes tipos de antena.

Vemos que para a OADC, a densidade do campo ele tromagnético (Vetor de Pointing) é maior na parte superior da abertura de saída. Já para a OADE essa densidade se encontra maior na parte inferior da abertura de saída.

Referências

1 - BERGMANN, José Ricardo e MOREIRA, Fernando José da Silva . Classical Axis-Displaced Dual-Reflector Antennas for Omnidirectional Coverage. **IEEE Transactions on Antennas and Propagation**, vol.53, no.9, Setembro 2005.

2 – SPIEGEL, Murray R . Schaums Mathematical Handbook of Formulas and Tables. 2^a Edição, 1999.

3 – JAMNEJAD-DAILAMI, V. e RAHMAT-SAMII, Yahya . Some Important Geometrical Features of Conic-Section-Generated Offset Reflector Antennas. **IEEE Transactions on Antennas and Propagation**, vol. ap-28, no. 6, novembro 1980.